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Abstract

Based on the classical thin shell theory and the ®rst-order shear deformation shell theory, two models are
developed in this paper for predicting the torsional buckling loads of thin and thick shells of revolution. The

material property of a shell of revolution is described as a general type of laminated composites and natural
coordinates are used to de®ne its geometry in which any kind of kinematic boundary condition can be applied
precisely. To e�ectively use the axi-symmetric property of a shell of revolution in the analysis, a multi-level

substructuring technique is employed in which only one substructure is involved in each substructuring level so the
size of the problem in real computation is always kept very small. The torsional buckling behaviours of a circular
cylinder, a conic shell, an elliptic hyperboloid shell and an ellipsoid shell are investigated using these models. # 2000
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1. Introduction

Buckling behaviours of doubly curved shells are often related to their large de¯ection processes and
the geometric nonlinearity must be considered, which usually brings great di�culty for their analytical
and numerical analysis. Extensive study has been given to this problem for several decades (for detail
surveys, see e.g. Stolarski et al., 1995; Cris®eld et al., 1992). Various numerical simulations have been
generated to show the detailed buckling and post-buckling processes (such as the full equilibrium path
in the typical snap-through phenomenon). Besides the nonlinearity related buckling behaviours of the
doubly curved shells, there still is a particular buckling problem for a special type of doubly curved shell
Ð shells of revolution Ð which can be accommodated in the linear shell theory. Torsional buckling of
shells of revolution is such a problem. Unfortunately, it has not been given much investigation before
either analytically or numerically.

Fig. 1 shows a shell of revolution subjected to torques acting at its two ends. The pre-buckling shear
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stress in the shell of revolution can be determined using the static equilibrium condition as follows,

t�s� � T

2phy2�s� : �1�

The pre-buckling deformation of the shell of revolution under the action of torques is assumed small
and within its original surface. Therefore, linear shell theory can be applied. When the shell of
revolution undergoes torsional buckling, the displacements out of the original surface develop.

This paper proposes a numerical method in the context of both the ®rst-order shear deformation shell
theory (SDST) and the classical thin shell theory (TST) to analyze the torsional buckling behaviour of a
shell of revolution with thick or thin geometry. The shell of revolution is circumferentially discretized by
the meridians and, in each element, the general spline functions are used to represent the displacement
variations along the meridians and Lagrangian and Hermitian polynomials are used to represent the
displacement variations in the circumferential direction. So the shape function of an element is a mix of
the spline function family and the Lagrangian and Hermitian polynomial family. In the proposed
method and its software implementation, there is no limit for the degree of spline functions used in the
interpolation for displacements. So, by choosing a higher degree for spline functions, a higher order of
displacement continuity along the meridians can be preserved if required. Without introducing much
di�culty and complexity, the method models the material property of a shell of revolution as a general
type of laminated composites for the purpose to accommodate a wide variety shells of revolution used
in di�erent engineering branches like aerospace engineering, maritime engineering and civil engineering.
In geometric description, this method chooses natural coordinates as a base so that any kind of
kinematic boundary condition along the meridians and on the crosswise end-edges of a shell of
revolution can be prescribed precisely. In ®nding the torsional buckling loads for a shell of revolution,
the Sturm sequence method (Wittrick and Williams, 1971; Gupta, 1972) is used incorporated with a
multi-level substructuring technique. The torsional buckling behaviours of a circular cylinder, a conic
shell, an elliptic hyperboloid shell and an ellipsoid shell are investigated with respect to the di�erent
kinds of material property that they have.

Fig. 1. A shell of revolution.
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2. Displacement representation of an element

2.1. Geometry description of an element

Fig. 2 shows a basic element of a shell of revolution which may, in general, be a laminate having
arbitrary lay-up of a number of layers of ®bre-reinforced composite material. In the element, the natural
coordinates are used. For a shell of revolution, this natural coordinate system is orthogonal and
happens to be the lines of curvature.

According to the ®rst-order shear deformation shell theory (see, e.g. Reddy, 1984; Leissa and Chang,
1996), the behaviour of the shell is characterized by the ®ve fundamental displacement-type quantities
indicated in Fig. 2, namely u, v and w, the translational displacements at the middle surface in the s, t
and z directions, respectively, and cs and ct, the rotations of the middle-surface normal along the s and
t directions, respectively. However, in the classical thin shell theory, the Kirchho� normalcy condition is
invoked and the rotations cs and ct are directly related to the de¯ection w and the displacements u and
v by the way of equations:

cs �
u

Rs
ÿ @w
@s

, ct �
v

Rt
ÿ @w
@t
: �2�

It follows, of course, that shell behaviour in TST analysis can be represented by three fundamental
quantities, namely u, v and w, rather than the ®ve fundamental quantities of SDST analysis.

In the present approach, the physical displacements are only speci®ed at some locations on several so
called reference meridians. The displacements elsewhere in an element are interpolated from them. On
the reference meridians, the spline interpolation is used which facilitates the required displacement
continuity along the meridians to be maintained and the kinematic boundary condition at two ends of
the shells to be satis®ed. Between the reference meridians, the polynomial interpolation is used which
observes the condition that no additional physical displacements are needed other than those speci®ed
on the reference meridians.

Fig. 2. An element.
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2.2. Displacement representation along a meridian

Let bm,n (s ) be a basis spline function of degree m de®ned on a reference meridian with a knot
sequence {sn }. It can be proved that the basis spline function is unique and can be expressed as a linear
combination of so-called truncated power functions (see, e.g. Schempp, 1982), i.e.

bm,n�s� �
X

0RkRm�1
ak,n�sÿ sn�k�m�, �3�

where (sÿsn+k)+=sup(sÿsn+k, 0). To satisfy the continuity, ®nite support and normal conditions of a
basis spline function, the real coe�cients ak,n (k = 0, 1, 2,..., m + 1) are determined by the following
equations:X

0RkRm�1
ak,n�sl ÿ sn�k�m � 0, �l � n� 1, . . . , n�m� 1� �4�

X
0RkRm�1

ak,n�sn�m�1 ÿ sn�k�m�1 � m� 1: �5�

Let f(s, t ) be a continuous displacement function, for example it may be u(s, t ), v(s, t ), w(s, t ), cs(s,
t ) or ct(s, t ). When t is constrained on the ith reference meridian, i.e. t=ti(s ), f(s, ti(s )) becomes a
continuous function on it. So, f(s, ti(s )) can be approximated by the spline interpolation as follows,

f �s,ti�s�� �
XNs

n�1
anbm,n�s�, �6�

where an (n = 1, 2,..., Ns ) are interpolation coe�cients which should be determined by the speci®ed
conditions of f(s, ti(s )) on the reference meridian, and Ns is the total number of basis splines used for
the meridian. The speci®ed conditions of f(s, ti(s )) are chosen to be:

f i �
�
f �s1, ti�s1��, f �1��s1, ti�s1��, . . . , f �ml��s1, ti�s1��, f �s2, ti�s2��, f �s3, ti�s3��, . . . ,

f �sNsÿm, ti�sNsÿm��, f �1��sNsÿm, ti�sNsÿm��, . . . , f �mr��sNsÿm, ti�sNsÿm��
�T
,

�7�

where ml=m/2ÿmod(m,2), mr=mÿmlÿ1 and f (k )(sl, ti(sl )) (k = 0, 1, 2,..., ml ) and f �k��sNsÿm, ti�sNsÿm��
(k = 0, 1, 2,..., mr ) are values of the displacement function and its derivatives at two ends of a shell
element where the kinematic boundary conditions may be enforced.

Substituting these speci®ed conditions in Eq. (6), the obtained a=[a1, a2,..., an ]
T are,

a � Rÿ1f i, �8�
where the elements of R are,

Rl,k �

8>><>>:
b�n�m,k�sl�, �l � n� 1; n � 0,1, . . . ,ml; k � 1,2, . . . ,Ns�;
bm,k�sn�, �l � n�ml; n � 2,3, . . . ,Ns ÿm; k � 1,2, . . . ,Ns�;
b
�n�
m,k�sNsÿm�1�, �l � n�Ns ÿmr; n � 0,1, . . . ,mr; k � 1,2, . . . ,Ns�:

: �9�

Combining Eqs. (6) and (8), the spline interpolation of f(s, ti(s )) with its speci®ed values is,
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f �s,ti�s�� � Bm�s�f i, �10�
where

Bm�s� � �bm,1�s�, bm,2�s�, . . . , bm,Ns
�s��Rÿ1: �11�

2.3. Displacement representation in the circumferential direction in SDST

When s is ®xed, f(s, t ) becomes a continuous function in the circumferential t-direction whose values
are restricted to f(s, ti(s )) on its junctions with the reference meridians. As only C 0-type continuity is
required on the displacements in SDST, the Lagrangian polynomial interpolation could be used in this
direction. Therefore, f(s, t ) can be approximated as,

f �s,t� �
Xip
i�1

Pi�t, s� f �s, ti�s��, �12�

where Pi(t, s ) (i=1, 2,..., ip ) are Lagrangian polynomial functions, for instance when ip=4, they are,

P1�Z� � �ÿ1� Z� 9Z2 ÿ 9Z3�
16

,

P2�Z� � �9ÿ 27Zÿ 9Z2 � 27Z3�
16

,

P3�Z� � �9� 27Zÿ 9Z2 ÿ 27Z3�
16

P4�Z� � �ÿ1ÿ Z� 9Z2 � 9Z3�
16

, �13�

where Z=2t/lt(s ), and lt(s ) is the circumferential arc length of the element at the position s on the
meridian.

2.4. Displacement representation in the circumferential direction in TST

In classical thin shell theory, the continuity requirement on displacements u(s, t ) and v(s, t ) is the
same as that in SDST. So, they can be approximated in the same way as before using Eq. (12).
However, as the Kirchho� normalcy condition expressed by Eq. (2) the requirement of the C 1-type
continuity of w(s, t ) is necessary. That means the ®rst derivatives of w(s, t ) in the circumferential
direction (i.e. @w(s,t )/@t ) should be used as freedoms at the outside meridians of the element. This
condition limits the choice of the interpolation functions for w(s,t ) in the circumferential direction.
When ip=4, Hermitian functions satisfy this condition. They are,

P1H�Z� � �2ÿ 3Z� Z3�
4

,
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P2H�Z� � b�1ÿ Zÿ Z2 � Z3�
8

,

P3H�Z� � b�ÿ1ÿ Z� Z2 � Z3�
8

P4H�Z� � �2� 3Zÿ Z3�
4

, �14�

where Z=2t/lt(s ). It should be noted that P1H(Z ) and P2H(Z ) are both associated with reference
meridian 1 and related to degrees of freedom corresponding to w(s, t ) and @w(s, t )/@t, respectively, so do
P4H(Z ) and P3H(Z ) with reference meridian 4 (Here, reference meridians 1 and 4 are the two outside
reference meridians of the shell element).

In summary, the displacement ®eld of an element in SDST can be constructed as,

u�s,t� �
Xip
i�1

Pi�t, s�Bmu
�s�ui, �15�

v�s,t� �
Xip
i�1

Pi�t, s�Bmv
�s�vi, �16�

w�s,t� �
Xip
i�1

Pi�t, s�Bmw
�s�wi, �17�

ct�s, t� �
Xip
i�1

Pi�t, s�Bmct
�s�cti �18�

cs�s,t� �
Xip
i�1

Pi�t, s�Bmcs
�s�csi: �19�

where mu, mv, mw, mct
and mcs

are the degrees of the basis spline functions used for interpolating u, v,
w, ct and cs, respectively. And the displacement ®eld of an element in TST are expressed by Eqs. (15)
and (16) and the following equation,

w�s,t� �
X4
i�1

PiH�t, s�Bmw
�s�wi: �20�

As noted before, w2 and w3 in the above equation are not the displacements associated with reference
meridians 2 and 3. They are actually @w1/@t and @w4/@t, respectively.
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3. Characteristic matrices of a SDST element

3.1. Constitutive equations

Within the context of ®rst-order SDST the linear constitutive equations for an arbitrary laminate are,

F � Le, �21�
where

F � �Ns, Nt, Nst, Ms, Mt, Mst, Qt, Qs�T, �22�

L �

266666666664

A11 A12 A16 B11 B12 B16 0 0
A22 A26 B21 B22 B26 0 0

A66 B61 B62 B66 0 0
D11 D12 D16 0 0

Sym: D22 D26 0 0
D66 0 0

A44 A45

A55

377777777775
�23�

e �

266666666666666666666666666666664

@u

@s
� w

Rs

@v

@t
� w

Rt

@u

@t
� @v
@s

@cs

@s

@ct

@t

@cs

@t
� @ct

@s
� 1

2

�
1

Rt
ÿ 1

Rs

��
@v

@s
ÿ @u
@t

�
@w

@t
� ct ÿ

v

Rt

@w

@s
� cs ÿ

u

Rs

377777777777777777777777777777775

: �24�

The laminate sti�ness coe�cients in Eq. (23) are de®ned in the standard way (see, e.g. Reddy, 1984;
Leissa and Chang, 1996). The explicit expression of the strain vector e in the speci®ed values of the
displacement ®eld can be obtained as follows using Eqs. (15)±(19).

e �
Xip
i�1

FFFidi, �25�

where di��uT
i , vT

i , wT
i , ccc

T
ti , ccc

T
si �T and

D. Tan / International Journal of Solids and Structures 37 (2000) 3055±3078 3061



FFFi �

2666666666666666666666666664

PiB
0
mu

0
1

Rs
PiBmw

0 0

0 P 0iBmv

1

Rs
PiBmw

0 0

P 0iBmu
PiB

0
mv

0 0 0
0 0 0 0 PiB

0
mcs

0 0 0 P 0iBmct
0

1

2

�
1

Rs
ÿ 1

Rt

�
P 0iBmu

1

2

�
1

Rt
ÿ 1

Rs

�
PiB

0
mv

0 PiB
0
mct

P 0iBmcs

0 ÿ 1

Rt
PiBmv

P 0iBmw
PiBmct

0

ÿ 1

Rs
PiBmu

0 PiB
0
mw

0 PiBmcs

3777777777777777777777777775

�26�

in which ` '' represents the derivative of a function or function vector with respect to its variable.

3.2. Sti�ness matrix

The strain energy of an element is,

U � 1

2

�ls
0

�lt�s�=2
ÿlt�s�=2

eTLe dt ds: �27�

Its quadratic form in the speci®ed values of the displacement ®eld is what follows after substituting
Eq. (25) into Eq. (27),

U � 1

2

�ls
0

�lt�s�=2
ÿlt�s�=2

Xip
i�1

Xip
j�1

dT
i FFF

T
i LFFFjdj dt ds � 1

2
dT kd, �28�

where d��dT
1 , dT

2 , . . . ,dT
ip
�T and,

k �
"�ls

0

�lt�s�=2
ÿlt�s�=2

FFFT
i LFFFj dt ds

#
: �29�

Matrix k is the sti�ness matrix of the element.

3.3. Geometric sti�ness matrix

The potential energy of the applied shear stress is,

V � 1

2
T

�ls
0

�lt�s�=2
ÿlt�s�=2

eTNLSeNL dt ds, �30�

where T is the torque and
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eNL �
�
@u

@s
� w

Rs
,
@u

@ t
,
@v

@s
,
@v

@t
� w

Rt
,
@w

@s
ÿ u

Rs
,
@w

@t
ÿ v

Rt
,
@ct

@s
,
@ct

@t
,
@cs

@s
,
@cs

@t

�T
, �31�

S � 1

2py2�s�

266666666666666666666666664

0 1
1 0

0 1
1 0

0 1
1 0

0
h2

12

h2

12
0

0
h2

12

h2

12
0

377777777777777777777777775

: �32�

The explicit expression of eNL in the speci®ed values of the displacement ®eld can be obtained as
follows using Eqs. (15)±(19),

eNL �
Xip
i�1

CCCidi, �33�

where

Ci �

26666666666666666666666666664

PiB
0
mu

0
1

Rs
PiBmw

0 0

P 0iBmu
0 0 0 0

0 PiB
0
mv

0 0 0

0 P 0iBmv

1

Rt
PiBmw

0 0

ÿ 1

Rs
PiBmu

0 PiB
0
mw

0 0

0 ÿ 1

Rt
PiBmv

P 0iBmw
0 0

0 0 0 PiB
0
mct

0

0 0 0 0 PiB
0
mcs

0 0 0 0 P 0iBmcs

37777777777777777777777777775

: �34�

Similarly, the quadratic form of the potential energy in the speci®ed values of the displacement ®eld
can be obtained as follows using Eq. (30),
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V � 1

2
T

�ls
0

�lt�s�=2
ÿlt�s�=2

Xip
i�1

Xip
j�1

dT
i CCC

T
i SCCCjdj dt ds � 1

2
dT�Tkg�d, �35�

where

kg �
"�ls

0

�lt�s�=2
ÿlt�s�=2

CCCT
i SCCCj dt ds

#
: �36�

Matrix Tkg is the geometric sti�ness matrix of the element of the shell of revolution subjected to
torque T.

4. Characteristic matrices of a TST element

4.1. Constitutive equations

These can again be expressed by the matrix equation Eq. (21). But the de®nitions of F, L and e
change to,

F � �Ns, Nt, Nst, Ms, Mt, Mst�T, �37�

L �

26666664
A11 A12 A16 B11 B12 B16

A22 A26 B21 B22 B26

A66 B61 B62 B66

D11 D12 D16

Sym: D22 D16

D66

37777775, �38�

e �

266666666666666666666664

@u

@s
� w

Rs

@v

@t
� w

Rt

@u

@t
� @v
@s

ÿ@
2w

@s2
� 1

Rs

@u

@s

ÿ@
2w

@ t2
� 1

Rt

@v

@t

ÿ2 @
2w

@s@ t
� 1

2

�
3

Rt
ÿ 1

Rs

�
@v

@s
� 1

2

�
3

Rs
ÿ 1

Rt

�
@u

@t

377777777777777777777775

: �39�

In obtaining Eq. (39) from Eq. (24), the Kirchho� normalcy condition (2) has been used.
Substituting Eqs. (15), (16) and (20) into Eq. (39) obtains the explicit expression of e in the speci®ed

values of the displacement ®eld,
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e �
X4
i�1

FFFidi, �40�

where di � �uT
i , vT

i , wT
i �T (as noted before, w2 and w3 are @w1/@t and @w4/@t, respectively in a TST

element) and

FFFi �

2666666666666666666664

PiB
0
mu

0
1

Rs
PiHBmw

0 P 0iBmv

1

Rs
PiHBmw

P 0iBmu
PiB

0
mv

0

1

Rs
PiB

0
mu

0 ÿPiHB 00mw

0
1

Rt
P 0iBmv

ÿP 00iHBmw

1

2

�
3

Rs
ÿ 1

Rt

�
P 0iBmu

1

2

�
3

Rt
ÿ 1

Rs

�
PiB

0
mv
ÿ2P 0iHB 0mw

3777777777777777777775

: �41�

4.2. Sti�ness matrix

The sti�ness matrix has the same expression as Eq. (29) only in which the de®nitions of FFi and L
have changed to Eqs. (41) and (38).

4.3. Geometric sti�ness matrix

The matrix kg in the geometric sti�ness matrix Tkg has the same expression as Eq. (36). But the
de®nitions for CCi and S now change to what follows,

CCCi �

2666666666666666664

PiB
0
mu

0
1

Rs
PiHBmw

PiB
0
mu

0 0
0 PiB

0
mv

0

0 P 0iBmv

1

Rt
PiHBmw

ÿ 1

Rs
PiBmu

0 PiHB 0mw

0 ÿ 1

Rt
PiBmv

P 0iHBmw

3777777777777777775

�42�

and

D. Tan / International Journal of Solids and Structures 37 (2000) 3055±3078 3065



S � 1

2py2�s�

26666664
0 1
1 0

0 1
1 0

0 1
1 0

37777775: �43�

5. Solution procedure

Torsional buckling analysis of shells of revolution can ®nally be expressed as an eigenvalue problem
as follows,

A�T �D � 0, �44�
where A(T )=KÿTKg, in which K and TKg are the sti�ness and geometric sti�ness matrices of the shells
of revolution, which can be assembled in the standard, direct fashion with those of its elements. Eq. (44)
constitutes standard linear eigenvalue problems which could be solved using any of a wide variety
methods. To e�ectively use the axi-symmetric property of the shells of revolution to enhance the
e�ciency in eigenvalue ®nding, the Sturm sequence method suggested by Wittrick and Williams (1971)
and Gupta (1972) incorporated with a multi-level substructuring technique is used in the present
approach. This method evaluates the singularity of the characteristic matrix A(T ) with the variation of
T to ®nd its eigenvalue. The lowest T which makes A(T ) singular is the required buckling load for the
problem.

When Gauss elimination is used to reduce matrix A(T ) into its triangular form AD(T ), the singularity
of A(T ) is equivalent to that one of the elements in the leading diagonal of AD(T ) is zero. That means
the singularity happens when A(T ) changes from positive de®nite to negative de®nite with the increase
of T. Therefore, if TL and TU make A(TL ) and A(TU ) be positive and negative de®nite, respectively, the
required buckling load T must lie between TL and TU. So, bi-section method can be used to ®nd it with
certainty.

Based on the fact that any negative de®nite matrix As (T ) which corresponds to a substructure at
certain level will cause the negativeness of A(T ) which corresponds to the entire structure, the e�ciency
to evaluate the positive (or negative) de®nite property of A(T ) can be dramatically increased using the
substructuring technique. This is especially bene®cial for the type of structure like the shells of
revolution which have axi-symmetric property that can result identical substructures at all levels. In this
sense, only the Gauss elimination for those identical substructures at di�erent levels need to be carried
out. In the present approach the ®rst level of substructuring involves treating the basic element as a
substructure and eliminating freedoms at the internal reference meridians of such an element. The rest
of substructuring levels involves sequentially doubling a identical basic element or substructure by
taking advantage of the axi-symmetric property of the shells of revolution so that at the end to form a
complete shell of revolution. Therefore, the size of the problem is always kept as small as that of a
single element in real computation.

The detailed solution procedures are as follows:

Step 1. Divide a shell of revolution into 2n slender elements circumferentially;
Step 2. Select the initial values of the lower and upper bounds of the buckling load T

�0�
L and T

�0�
U as 0

and a large number which makes A�T �0�U � be negative de®nite, respectively;
Step 3. Use bi-section method to select a new value for T as,
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T �
�
T
�k�
L � T

�k�
U

�
2

, �k � 0, 1, 2, . . .�; �45�

Step 4. Denote Ae (T )=kÿTkg. Now partition Ae (T ) into the form,

Ae�T � �
�

Ae�T ��II� Ae�T ��IO�
Ae�T ��OI� Ae�T ��OO�

�
, �46�

in which Ae (T )(II) and Ae (T )(OO) are associated with the internal and external degrees of
freedom on the internal and external reference meridians of a basic element. Eliminating the
internal degrees of freedom obtains the characteristic matrix of the element which is solely
associated with the external degrees of freedom of the element. Its expression is as follows:

Ae�T ��O� � Ae�T ��OO� ÿ Ae�T ��OI��Ae�T ��II�
�ÿ1

Ae�T ��IO�: �47�

The local boundary conditions on the internal reference meridians should be taken into
account in the above eliminating process. If any element in the leading diagonal of AD

e �T ��II� is
found to be negative when Gauss elimination is applied on Ae (T )(II), it can be concluded that
matrix Ae (T )(II) is negative de®nite so does A(T ) and then go to Step 6;

Step 5. Assemble a substructure with two identical elements. Then use the procedure explained in
Step 4 to eliminate the internal degree of freedoms of this substructure, and a characteristic
matrix which is only associated with external degree of freedoms of this substructure can be
obtained. If the characteristic matrix of this substructure is found to be negative de®nite during
its Gauss elimination process, it can be concluded that this will result A(T ) to be negative
de®nite and then go to Step 6. Assemble a higher level substructure with two identical newly
obtained substructures and eliminate its internal degree of freedoms. Repeat this doubling
process for n times and in the end to form a complete shell of revolution;

Step 6. If A(T ) is negative de®nite, the new upper bound for the buckling load is modi®ed as TU=T.
Otherwise if A(T ) is positive de®nite, the new lower bound for the buckling load is modi®ed as
TL=T;

Step 7. If the relative di�erence between the two bounds is less than a given precision, then stop the
iterative calculation and output the buckling load. Otherwise go back to Step 3 to start another
iteration.

It should be noted that the e�ciency of the above solution procedure is not a�ected by the initial
value chosen for T

�0�
U because for a large T the negativeness of A(T ) can be detected in its lower

substructuring levels which does not involve too much computation at that stage. In ®nding the
buckling load, the majority of the computation is associated with the Gauss elimination. As stated
before, the size of the matrix needed to do the Gauss elimination at each level of substructuring is
always kept as small as that of the characteristic matrices of a single element and for a shell of
revolution with 2n-element division there are only n+1 such type of Gauss elimination, so the e�ciency
of Sturm sequence method used in this fashion is very high. This is all due to the axi-symmetric
property of the shells of revolution. Once a required buckling load is determined it may be desired to
®nd the corresponding buckling mode shape. The random vector method suggested by Hopper and
Williams (1972) is used in the present approach to calculate the buckling mode shape.
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6. Applications

The proposed method in the context of SDST and TST has been programmed. Selected torsional
buckling applications involving the use of this integrated software are described in what follows. In all
applications, the basic elements run the full length of a shell of revolution and four reference meridians
are used (i.e. ip=4) in every basic element, and the degree of spline functions for interpolating u, v, w
and ct is 3 (i.e. mu � mv � mw � mct

� 3� and that for cs is 2 (i.e. mcs
� 2).

First, the torsional buckling of an isotropic and an orthotropic circular cylinder with diaphragm ends
are analyzed. For the isotropic cylinder the material properties are Young's modulus E = 100 GPa,
Poisson ratio n=0.3 and for the orthotropic cylinder the material properties are Young's modulus
EL=100 GPa, ET=20 GPa, Poisson ratio n=0.3 and shear modulus GLT=GTT=8.5 GPa. The length
(L ) and radius (R ) of the cylinder are 0.5 m and 0.1 m. Ten equal spline sections and 256 elements
arranged in nine levels of substructures are used in the proposed method. The calculated buckling loads
(T ) using TST analysis are recorded in Table 1. For comparison, the prediction for these loads obtained
using the following approximate formula,

Tcr � 21:75D5=8
22

�
A11A22 ÿ A2

12

A22

�3=8
R5=4

L1=2
, �48�

which was given by Vinson and Sierakowski (1986) are also recorded in Table 1. The validity of the
above approximate solution depends on the following condition (see, e.g. Vinson and Sierakowski,
1986),

r � 500

�
D11

D22

�5=6�
12A22D11

A11A22 ÿ A2
12

�1=2 R

L2
R1: �49�

This quantity is also calculated and recorded in Table 1. The relative di�erence e between the two
results is calculated as e=(TcrÿT )/Tcr and is given in Table 1 too. It can be seen from Table 1 that
when r is very small, the two results come closer.

Next, the torsional buckling behaviours of a circular shell, a conic shell, an elliptic hyperboloid shell
and an ellipsoid shell, each of them having isotropic material properties, cross-ply and angle-ply
laminations, are analyzed using both TST and SDST theory. In the present case, all shells are clamped
at one end and simply supported at another. Their lengths are all 0.5 m and their thicknesses all change
from 0.0005 m to 0.001 m and to 0.002 m to model the thin and thick shells. The radius of all shells at
the clamped end are same with value of 0.1 m. The radius of the conic, the elliptic hyperboloid and the
ellipsoid shells at the simply supported end are the same, with avalue of 0.07 m. The radius of the

Table 1

Comparison of the buckling loads (Nm) obtained by the proposed method and the approximate analytical method. (The values in

parentheses are calculated with Eq. (48))

Thickness h (cm) Isotropic material Orthotropic material

T e r T e r

0.05 1374.1 (1431.7) 4.02% 10.7% 423.35 (502.83) 15.8% 38.9%

0.02 175.65 (182.17) 3.58% 4.27% 56.201 (63.984) 12.2% 15.6%

0.01 37.141 (38.297) 3.02% 2.14% 12.118 (13.454) 9.91% 7.78%

0.001 0.2092 (0.2154) 2.86% 0.21% 0.0713 (0.0756) 5.67% 0.78%
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elliptic hyperboloid and the ellipsoid shells at 0.3 m away from the clamped end are 0.05 m and 0.12 m,
respectively. The meridians of the elliptic hyperboloid and the ellipsoid shells are parabola. For the
isotropic shells, the material properties are the same as those used in the ®rst example. For the
laminated composite shells, two layers of equal thickness are used which have the same orthotropic
material properties as described in the ®rst example. In the shells with cross-ply laminations the lay-up is
[08/908], i.e. the inner layer is placed along the meridian whilst the outer layer is placed 908 to the
meridian. In the shells with angle-ply laminations the lay-up is [458/908], i.e. the inner layer is placed 458

to the meridian and the outer layer remains the same as in the cross-ply shells. As an overall buckling
mode shape happens for the circular, the conic and the elliptic hyperboloid shells, ten spline sections
evenly distributed along the meridian and 256 elements arranged in nine levels of substructures as in the
®rst example are used. However, as a local buckling mode shape happens for the ellipsoid shell, ten
unequal spline sections with knot sequence [0, 0.13, 0.25, 0.35, 0.385, 0.415, 0.44, 0.46, 0.475, 0.49,
0.50909] m are used in this case, and the number of elements used is the same as before. For
comparison, twenty equal spline sections are also used to try to capture the local buckling mode shapes.
The calculated buckling loads are recorded in Table 2 and some of the buckling mode shapes are shown
in Figs. 3±10.

It can be seen from Table 2 that when the shells are thin the buckling loads obtained from TST and
SDST models are very close as expected and when the shells become gradually thicker the buckling
loads obtained from these two models deviate from each other to an extent which can be as big as over
one percent in the case of thick (h = 0.002 m) elliptic hyperboloid angle-ply shells for which the shell
thickness to its minimum circumferential radius ratio is one over twenty ®ve. From Figs. 3±10, it can be
seen that with the increase of the shell thickness the number of circumferential half waves of the
buckling mode shapes reduces. This is because the contribution from the bending deformation to the
shell strain energy increases with the increase of the shell thickness. In comparing the results obtained
using twenty equal and ten unequal spline sections for the ellipsoid shells, it is found that in most cases
the buckling loads obtained corresponding to twenty equal spline sections are higher than what are

Table 2

Buckling loads (Nm) of di�erent shells of revolution. (The values in parentheses are obtained using twenty equal spline sections)

Thickness Material property Theory Circular shell Conic shell Elliptic hyperboloid shell Ellipsoid shell

0.0005 m Isotropic material TST 1448.0 1136.6 436.46 2963.4 (2992.0)

SDST 1447.1 1135.9 436.90 2961.1 (3008.7)

Cross-ply laminates TST 530.95 421.07 163.93 934.75 (964.58)

SDST 530.57 420.78 163.68 933.23 (966.49)

Angle-ply laminates TST 486.18 379.63 171.15 1025.6 (1025.7)

SDST 485.72 379.26 170.64 1023.7 (1024.6)

0.001m Isotropic material TST 6871.1 5377.3 2291.9 12979.0 (13029.0)

SDST 6861.9 5369.5 2290.5 12936.0 (12983.0)

Cross-ply laminates TST 2430.3 1915.1 826.01 4023.1 (4091.8)

SDST 2426.0 1911.6 818.69 3997.6 (4058.1)

Angle-ply laminates TST 2361.6 1837.5 842.82 4567.5 (4552.9)

SDST 2356.8 1833.7 839.41 4539.4 (4530.0)

0.002m Isotropic material TST 32816.0 25233.0 11227. 57271.0 (57315.0)

SDST 32723.0 25146.0 11179. 56768.0 (56859.0)

Cross-ply laminates TST 11047.0 8630.7 3834.6 17586.0 (17656.0)

SDST 10997.0 8593.0 3801.5 17395.0 (17468.0)

Angle-ply laminates TST 11396.0 9271.5 4654.7 20389.0 (20264.0)

SDST 11341.0 9231.7 4592.9 20107.0 (20085.0)
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Fig. 3. Torsional buckling mode shapes of a thin circular shell. (Isotropic (a), Cross-ply (b) and Angle-ply (c); h=0.0005 m).
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Fig. 4. Torsional buckling mode shapes of a thick circular shell. (Isotropic (a), Cross-ply (b) and Angle-ply (c); h=0.002 m).
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Fig. 5. Torsional buckling mode shapes of a thin conic shell. (Isotropic (a), Cross-ply (b) and Angle-ply (c); h=0.0005 m).
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Fig. 6. Torsional buckling mode shapes of a thick conic shell. (Isotropic (a), Cross-ply (b) and Angle-ply (c); h=0.002 m).
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Fig. 7. Torsional buckling mode shapes of a thin elliptic hyperboloid shell. (Isotropic (a), Cross-ply (b) and Angle-ply (c); h =

0.0005 m).
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Fig. 8. Torsional buckling mode shapes of a thick elliptic hyperboloid shell. (Isotropic (a), Cross-ply (b) and Angle-ply (c); h =

0.002 m).
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Fig. 9. Torsional buckling mode shapes of a thin ellipsoid shell. (Isotropic (a), Cross-ply (b) and Angle-ply (c); h=0.0005 m).
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Fig. 10. Torsional buckling mode shapes of a thick ellipsoid shell. (Isotropic (a), Cross-ply (b) and Angle-ply (c); h=0.002 m).
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obtained using ten unequal spline sections although the degree of freedoms in the former is much larger
than that in the latter. Only in the cases of thicker (h = 0.001 m and 0.002 m) angle-ply ellipsoid shells
whose buckling mode shapes are not very localized as seen from Fig. 10(c), the buckling loads obtained
using twenty equal spline sections are slightly better than that obtained using ten unequal spline
sections. This particular example also shows the advantages of the general spline method for local
buckling problems.

7. Conclusions

Two types of shell elements based on the displacement descriptions in the thin shell theory and the
®rst-order shear deformation shell theory have been developed using Rayleigh±Ritz approach. They are
featured with good displacement continuity along the meridians of the shells of revolution because of
the spline functions used in the displacement interpolation in that direction. Under the static equilibrium
condition and small pre-buckling displacement assumption, the pre-buckling shear stress distribution is
determined and the torsional buckling problem is formed for the shells of revolution using the sti�ness
and geometric sti�ness matrices constructed with respect to their original geometries. Numerical
examples have been successfully carried out to show the validity of these two models and particularly
their capability to capture the local buckling mode shapes with less computational e�orts.
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